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In this paper, we describe a numerical method for determining the location of a crack in
a beam of varying depth when the lowest three natural frequencies of the cracked beam are
known. The crack is modelled as a rotational spring and graphs of spring sti!ness versus crack
location are plotted for each natural frequency. The point of intersection of the three curves gives
the location of the crack. Earlier work in this area involved the use of the Frobenius technique
for solving the governing di!erential equation analytically and then using a semi-numerical
approach to obtain the crack location. In this work, we use the "nite element approach to solve
the same problem. The beam is modelled using beam elements and the inverse problem of
"nding the spring sti!ness, given the natural frequency, is shown to be related to the problemof a
rank-one modi"cation of an eigenvalue problem. Examples outlining the accuracy and ease of
using this method are shown. The results are compared with those from semi-analytical
approaches. The biggest advantage of this method is the generality in the approach; di!erent
boundary conditions and variations in the depth of the beam can be easily modelled.
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1. INTRODUCTION

The detection of cracks in structures has received considerable attention lately and several
techniques have been proposed. While the detection of cracks in complex structures is not
a simple problem, the task of determining the location and size of a single crack in a beam is
tractable. One of the techniques involves modelling the crack by a rotational spring [1, 2].
The forward problem is described as the problem of determination of the "rst few natural
frequencies of the beam given the location and size of the crack. The inverse problem is
described as the problem of determination of the location and the size of the crack given the
"rst few natural frequencies of the cracked beam.

Nandwana and Maiti [1] and Chaudhari and Maiti [2] used a semi-analytical method
for solving the forward as well as the inverse problem. For the forward problem, the
governing di!erential equation for transverse vibration is written. The displacement
solution can be written in terms of an in"nite series and application of boundary conditions
gives a characteristic equation whose roots yield the natural frequencies. To get numerical
results, some computation is required. The in"nite series cannot be summed analytically, so it is
evaluated numerically using a certain number of terms. The characteristic equation is non-linear
and needs to be solved using a root-"nding algorithm. For certain beams, the computations
give inaccurate results if standard double precision is used. Hence, quadruple precision
calculations had to be performed. This has been reported in references [2, 3]. Also, for di!erent
boundary conditions and di!erent variations in the depth of the beam (such as steps and
tapers), the entire algebra has to be repeated, requiring considerable e!ort and expertise.

This is where a numerical approach is more suitable. In this paper, we have used a "nite
element based approach for solving the forward as well as inverse problems. The beam is
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modelled using variable depth beam "nite elements with two nodes and two degrees of
freedom (d.o.f.) per node. As in the semi-analytical approach, the crack is modelled by
a rotational spring. The forward problem then reduces to the solution of a generalized
eigenvalue problem, which can be solved accurately using double precision. Di!erent
boundary conditions can also be modelled easily.

The inverse problem involves determination of the crack location and size given the "rst
three natural frequencies of the cracked beam. In the semi-analytical approach, di!erent
locations of the crack are tried out. For each location, the characteristic equation now
contains the unknown sti!ness of the spring. However, the natural frequency is now known.
Thus, the sti!ness of the spring which results in the given natural frequency can be determined.
This is done for all three natural frequencies and graphs of spring sti!ness versus crack location
are obtained. Since physically there is only one crack, the intersection of the three curves
gives the crack location. The crack size is obtained from the spring sti!ness using another
relation. Again, for di!erent variations in depth of the beam as well as for di!erent
boundary conditions, the algebra has to be repeated and it requires considerable e!ort.

Here, we use a numerical approach for the inverse problem as well. We "rst solve
a &nearby' forward problem of determining the "rst three natural frequencies of a beam with
crack modelled as a rotational spring of zero sti!ness. While this does not correspond to
any physical system, it directly leads us to the solution of the inverse problem. The
introduction of a spring of an unknown sti!ness can be shown to be equivalent to
a rank-one modi"cation of an eigenvalue problem whose lowest three eigenvalues are
known. The unknown sti!ness can be easily and e$ciently solved for. This is repeated for
di!erent crack locations as in the semi-analytical method and graphs of spring sti!ness
versus crack location are obtained.

The rest of the paper is organized as follows. In section 2, we outline the basic "nite
element approach for "nding the natural frequencies of a beam. In section 3, we use the "nite
element approach for computing the natural frequencies of truncated wedge beams with
di!erent boundary conditions. The results are compared with those given in reference [3] and
are found to be su$ciently accurate. In section 4, the inverse problem is modelled as a rank-one
modi"cation of an eigenvalue problem. In section 5, we present numerical examples which
compare this method with the semi-analytical method used in references [1, 2].

2. THE FINITE ELEMENT FORMULATION

Figure 1 shows a single beam element with two nodes. It has two d.o.f. at each node, the
transverse de#ection, v, and the rotation, h"dv/dx. This is the same as the standard beam
element except for the fact that the depth, h(x), is a function of x. We have assumed a linear
variation from h

1
at the left end to h

2
at the right end. We use the shape functions for a uniform

beam to model the displacement in this beam element. These shape functions are given by [4]
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Figure 1. A single beam element of length l.
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where ¸ is the length of the beam element. The element sti!ness matrix and the consistent
element mass matrix are given by
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d2N

dx2
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dx, (2)
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x, (4)

A(x)"bh (x), (5)

I(x)"
bh (x)3

12
, (6)

where b is the (uniform) width of the beam, E is Young's modulus, o is the density, A(x) is the
area of the cross-section of the beam at a distance x from the left node, and I (x) is the
cross-sectional moment of inertia at a distance x from the left node.

The integrand for K
e

will contain "fth order terms in x and the integrand for M
e

will
contain seventh order terms in x. Both integrals can be evaluated exactly using a four-point
Gaussian quadrature. The mass and sti!ness matrices are assembled as usual. Boundary
conditions can be of the following types.

Clamped: v"0, h"0, (7)

Pinned: v"0, (8)

Sliding: h"0, (9)

Free: no restriction on v or h. (10)

Those d.o.f.s that are set to zero due to boundary conditions are eliminated from the
equations and we are left with a generalized eigenvalue problem

K(g)u"jM(g)u, (11)



Figure 2. (a) Beam with crack; (b) a sample discretization using beam elements and (c) an &expanded' view of the
discretization.
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where K(g) and M(g) are, respectively, the global sti!ness and mass matrices and u is the
vector of unknown nodal d.o.f.s. The eigenvalues, j, are the squares of the natural
frequencies and can be computed using any standard generalized eigensolver.

For computational convenience, we have used a lumped mass matrix instead of the above
consistent mass matrix. Lumping is done by scaling the diagonal entries of the mass matrix
such that the total mass is conserved, and zeroing out all o!-diagonal entries. This results in
substantial savings in computational e!ort in solving the eigenvalue problem with only
a small adverse e!ect on accuracy. Details can be found in Cook [5]. Using this diagonal
lumped mass matrix, M, instead of M(g), the generalized eigenvalue problem can be reduced
to the standard eigenvalue problem in the following manner. Premultiplying both sides of
equation (11) by M~1@2 and using the fact that M~1@2M1@2 is the identity matrix we get

M~1@2K(g)M~1@2M1@2u"jM1@2u (12)

which simpli"es to

Ad"jd, (13)

where

A"M~1@2K(g)M~1@2, (14)

d"M1@2u. (15)

The shape functions do not capture the mode shapes of the beam and hence the solution
is approximate. By increasing the number of elements, the accuracy can be increased.

We now move on to the forward problem of determining the natural frequencies of
a beam with a crack, given the location and size of the crack. A transverse crack in a beam
can be represented by a torsional spring (see references [1, 2]) as shown in Figure 2. Suppose
we know the sti!ness, k, of the spring and want to compute the natural frequencies. The
above formulation can be extended to this case. Figure 2c shows an &expanded' view of the



Figure 3. A wedge beam with truncation factor a [3].
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beam in Figure 2b. The spring connects nodes i and i#1 and couples the rotations, h
i
and

h
i`1

through the sti!ness matrix

K
s
"C

k

!k

!k

kD . (16)

Additionally, the vertical de#ection of nodes i and i#1 are the same, i.e., v
i
"v

i`1
. This can

be easily accounted for by representing the vertical de#ection of both nodes i and i#1 by
a single d.o.f. This sti!ness matrix, K

s
, is also assembled into the global sti!ness matrix, K(g).

The solution of the eigenvalue problem can then proceed as usual.

3. NATURAL FREQUENCIES OF TRUNCATED WEDGE BEAMS

Since the forward problem involves the determination of the natural frequencies of
a cracked beam given the location and size of the crack, as a "rst step, we will determine the
natural frequencies of an uncracked wedge beam using FEM and compare the results with
those obtained by Naguleswaran [3].

Figure 3 shows a truncated wedge beam whose natural frequencies are to be determined.
Using the notation from Naguleswaran [3], we denote the truncation factor by a and the
modi"ed dimensionless natural frequency by X

m
, where

X2
m
"(1!a)4m(¸)u2¸4/EI(¸), (17)

where m(¸) is the mass per unit length at x"¸, EI (¸) is the #exural rigidity at x"¸, and
u is the natural frequency in rad/s.

Naguleswaran [3] calculated the "rst three modi"ed dimensionless natural frequencies
for beams with di!erent boundary conditions and truncation factors using the method of
Frobenius. This is a semi-analytical method which involves expressing the de#ection of the
beam by a power series, retaining su$cient terms, and iteratively "nding roots of
a non-linear equation to obtain the natural frequencies.

By discretizing the beam into 50 elements of equal length and using the method outlined
in section 2, the "rst three modi"ed dimensionless natural frequencies, X

m1
, X

m2
, X

m3
, were

determined. Table 1 compares the "rst three natural frequencies computed using the FEM
approach and the Frobenius method for clamped}clamped (cl}cl) and pinned}sliding
(pn}sl) beams for di!erent truncation factors, a. In the table, an asterisk (*) indicates that the
computation of the frequency for the same mode for higher truncation factors requires



TABLE 1

A comparison of semi-analytical and FEM results for wedge beams

cl}cl cl}cl pn}sl pn}sl
a [3] FEM [3] FEM

0)05 X
m1

8)6237 8)6239 1)0962 1)0962
X

m2
23)4919 23)4910 9)7820 9)7817

X
m3

45)7416 45)7358 25)3493 25)3469

0)10 X
m1

9)8846 9)8844 1)2841 1)2841
X

m2
27)0084 27)0067 10)8970 10)8967

X
m3

52)7080 52)7002 28)5479 28)5452

0)15 X
m1

10)9209 10)9207 1)4230 1)4230
X

m2
29)9041 29)9022 11)8083 11)8080

X
m3

58)4341 58)4257 31)2153 31)2125

0)20 X
m1

11)8417 11)8415 1)5372 1)5372
X

m2
32)4755 32)4734 12)6181 12)6178

X
m3 *63)5118 63)5029 33)6057 33)6028

0)25 X
m1

12)6886 12)6884 1)6357 1)6357
X

m2
34)8384 34)8362 13)3648 13)3645

X
m3

68)1728 68)1635 35)8181 35)8151

0)30 X
m1

13)4832 13)4830 1)7231 1)7231
X

m2 *37)0527 37)0504 14)0679 14)0675
X

m3
72)5368 72)5271 37)9036 37)9005

0)35 X
m1

14)2381 14)2379 1)8021 1)8021
X

m2
39)1539 39)1515 14)7387 14)7383

X
m3

76)6753 76)6651 *39)8927 39)8895

0)40 X
m1

14)9616 14)9613 1)8744 1)8744
X

m2
41)1656 41)1631 15)3845 15)3841

X
m3

80)6348 80)6242 41)8053 41)8020

0)45 X
m1 *15)6593 15)6591 1)9411 1)9411

X
m2

43)1039 43)1013 16)0103 16)0099
X

m3
84)4478 84)4368 43)6555 43)6521

0)50 X
m1

16)3356 16)3353 2)0033 2)0033
X

m2
44)9806 44)9779 *16)6199 16)6194

X
m3

88)1389 88)1268 45)4535 45)4499

0)55 X
m1

16)9935 16)9932 2)0615 2)0615
X

m2
46)8049 46)8021 17)2158 17)2153

X
m3

* 91)7120 47)2069 47)2032

0)60 X
m1

17)6354 17)6351 2)1162 2)1162
X

m2
48)5839 48)5807 17)8002 17)7997

X
m3

* 95)2063 48)9218 48)9180

0)65 X
m1

18)2634 18)2631 2)1679 2)1679
X

m2
* 50)3193 18)3747 18)3742

X
m3

* 98)6210 * 50)5990

0)70 X
m1

18)8791 18)8788 *2)2169 2)2169
X

m2
* 52)0225 18)9407 18)9402

X
m3

* 101)9649 * 52)2502
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quadruple precision computation, as in table 1 indicates unacceptably inaccurate results
even with quadruple precision computation. Several things are evident from this table.
First, the FEM results are approximately within 0)01 per cent of the analytical results and
are considered accurate enough for the computations that follow. Second, the FEM results
for all values of a were generated using double precision calculations with no deterioration
in accuracy. Third, even for large values of a, when the Frobenius method failed to give an
acceptable answer, the FEM results appear to be correct, although no independent
con"rmation can be obtained because of lack of data. Fourth, di!erent end conditions such
as clamped, pinned, or free could be handled using the same program merely by changing
the boundary conditions in a data "le.

4. THE INVERSE PROBLEM

We now consider the numerical solution of the inverse problem of determination of crack
location given the "rst three natural frequencies. As in the case of the semi-analytical
approach, we try out di!erent locations of the crack, insert a torsional spring in our FE
model, and determine the value of the spring sti!ness which gives rise to the frequency equal
to the measured value. Consider Figure 2 again. We will "rst solve our real symmetric
eigenvalue problem, Ad"jd, with the spring sti!ness set to zero. Note that this is di!erent
from not having a spring at all. The vertical displacements of nodes i and i#1 are the same,
but the slopes, h

i
and h

i`1
, are unrelated. While this may have no physical signi"cance, it

will help us solve the inverse problem.
Suppose we have solved the eigenvalue problem with a spring of zero sti!ness and

obtained the eigenvalues, K, and the eigenvectors, Q, so that

QTAQ"K. (18)

Here, K is a diagonal matrix of eigenvalues of A and Q is an orthonormal matrix whose
columns are the eigenvectors of A. That is

K"C
j
1

}
j
n
D , QQT"QTQ"I. (19)

When we insert a torsional spring of (unknown) sti!ness, k, the matrix A changes to
A1 "A#M~1@2K1 M~1@2 where K1 is a matrix of the same size as A and mostly zero, except
that it contains the submatrix K

s
(given in equation (16)) at the appropriate location. More

precisely, if h
i

is d.o.f. j and h
i`1

is d.o.f. j#1, then K1 ( j, j )"k, K1 ( j, j#1)"!k,
K1 ( j#1, j)"!k, and K1 ( j#1, j#1)"k are the only non-zero elements of K1 . K1 is
a rank-one matrix given by

K1 "kzN zN T, (20)

where zN"M0,2, 0, 1,!1, 0,2, 0NT. Hence, the matrix A1 can also be written as a rank-one
modi"cation of A as follows:

A1 "A#kzzT, (21)
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where z"M~1@2z6 can be computed easily. So our inverse problem is now reduced to
"nding the value of k such that a given value, say j6 , is an eigenvalue of A1 . By using
a similarity transformation (since Q is orthonormal, Q~1"QT), the above equation can be
transformed into

QTA1 Q"QTAQ#kQTzzTQ (22)

"K#kwwT, (23)

where w"QTz. We already know K, and w can be computed easily as Q and z are known.
Again, note that equation (23) involves a rank-one modi"cation of a known matrix, K. Also
note that if j6 is an eigenvalue of A1 , then it is also an eigenvalue of QTA1 Q since eigenvalues
are not changed by similarity transformations. From the de"nition of eigenvalues,
p(jN )"det(K#kwwT!j6 I)"0. The following simple algorithm calculates p (jN ) given j6 (see
reference [6] for details).

r
1
(jN )"1,

p
1
(jN )"(j

1
!jN )#kw2

1

for i"2 to n,

r
i
(jN )"(j

i~1
!jN )r

i~1
(jN ),

p
i
(jN )"(j

i
!jN )p

i~1
(jN )#kw2

i
r
i
(jN )

end

p(jN )"p
n
(jN ).

In our case, we now that p(jN )"0, but we do not know k. However, since p(jN ) is a linear
function of k, it is quite trivial to rewrite the above algorithm to give us k knowing that
p(jN )"0 as follows:
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1
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b
1
"j

1
!jN ,

c
1
"w2

1

for i"2 to n,

r
i
"(j
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n
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n
.

r
i
, b

i
, c

i
can become very large and hence their mantissas and exponents must be stored

separately. The above algorithm has to be executed once for each value of the measured
natural frequency, j6 , to obtain the three values of spring sti!ness. This has to be repeated at
several di!erent locations along the length of the beam; the nodes provide convenient
locations for inserting a spring.



Figure 4. A two-segment beam [1].

TABLE 2

Di+erent crack locations and sizes along with the FE-based natural frequencies used
in this study [1]

Natural frequencies (rad/s)
Case Crack position Crack size
number b*"x/¸ a/h u

1
u

2
u

3

Uncracked Uncracked 455)0 2345)9 6506)7
1 0)05 0)10 451)5 2334)0 6483)7
2 0)20 0)10 453)0 2345)7 6498)4
3 0)40 0)10 454)2 2341)6 6488)3
4 0)45 0)10 454)4 2340)1 6499)4
5 0)20 0)20 477)6 2344)6 6480)9
6 0)20 0)30 438)3 2342)7 6448)3
7 0)20 0)40 423)8 2339)7 6398)3
8 0)20 0)50 402)2 2335)5 6323)1
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For each of the three measured natural frequencies, we plot a graph of sti!ness, k, versus
crack location. Since there is only one crack, the point of intersection of the three curves
gives us the crack location. In most cases, however, the three curves do not intersect because
of inaccuracies in the modelling as compared to measured results. For this purpose, the
&zero-setting' procedure described in references [1, 7] is used. In this procedure, Young's
modulus of the beam is changed, so that the measured natural frequencies of the uncracked
beam match the computed natural frequencies of the uncracked beam. For each frequency,
a di!erent Young's modulus may have to be used. This is some sort of a &scaling' to reduce
the e!ect of modelling errors. The next section describes the results obtained for several test
cases.

5. NUMERICAL EXAMPLES

The "rst example comes from reference [1]. All input values are as given in that paper.
Figure 4 shows a stepped beam with material data as follows: Young's modulus"
2)1]1011 N/m2, density"7800 kg/m3, and the Poisson ratio"0)3. Table 2 shows crack
locations and sizes and corresponding &measured' natural frequencies. These frequencies
were obtained in reference [1] by performing a "nite element analysis with a very "ne mesh.
For comparison with that paper, we plot non-dimensional sti!ness, K"k¸/EI

1
versus

crack location b"x/¸ for di!erent natural frequencies. ¸ is the length of the beam



Figure 5. Variation of spring sti!ness with location for test cases from reference [1].
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(500mm), E is Young's modulus, and I
1

is the cross-sectional moment of inertia of the left
section of the beam. Figure 5 shows these plots. A comparison with reference [1] shows that
they are essentially identical. Table 3 shows the results in a tabular form. The error in crack



TABLE 3

Comparison of results obtained by numerical method with results in reference [1]

Actual crack Predicted location
Case location
number b* b* [1] b* (FEM)

1 0)05 0)0494 0)0481
2 0)20 0)2061 0)2098
3 0)40 0)4028 0)3980
4 0)45 0)4583 0)4578
5 0)20 0)2013 0)2020
6 0)20 0)2004 0)2010
7 0)20 0)2001 0)2004
8 0)20 0)2002 0)2005

Figure 6. A two-segment beam with one tapered segment [2].

TABLE 4

Comparison of actual and predicted crack locations

Actual Natural frequencies (Hz) [2] Predicted location

Location b* Size a (mm) u
1

u
2

u
3

b [2] b (FEM)

Uncracked Uncracked 61)18 275)11 686)81
0)4 3)0 60)39 268)78 685)11 0)390 0)395
0)8 4)51 60)11 271)38 686)09 0)83 0)806
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location is roughly similar to that in reference [1]. This is to be expected as the numerical
method approaches the problem in a manner almost identical to the semi-analytical approach.

The next example is from reference [2]. Figure 6 shows a two-segment beam with one
uniform and one tapered section. As in reference [2], the following input values were
chosen: length"480 mm, width"12mm, depth at the "xed end"20mm, depth at free
end"8mm, length of taper section"240 mm and length of uniform section"240mm.
The density Young's modulus, and the Poisson ratio are as in the previous example. Table 4
shows the crack locations and sizes and the natural frequencies obtained by FEM. Using
this data, and the above numerical approach, the variation of non-dimensional sti!ness,



Figure 7. Variation of spring sti!ness with location for test cases from reference [2]. Crack location: (a)
b*"0)4, a"3 mm; (b) b*"0)8, a"4)51mm.
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K"k¸
1
/EI

1
, versus crack location as shown in Figure 7 was obtained. Here, ¸

1
is the

length of the uniform section of the beam, (240mm), E is Young's modulus, and I
1

is the
cross-sectional moment of inertia of the uniform portion of the beam. The results are
presented in the last column in Table 4. Again, a comparison with reference [2] shows that
the results are almost as accurate as the semi-analytical results.

For all the above test cases, 100 elements of equal length were used to discretize the beam.
For each case, the execution time of the program was just under 1min on a 400 MHz
Pentium-II computer. Since this was a reasonably small amount of time, further
improvements in computational speed were considered unnecessary.

In most cases, because of numerical inaccuracies, the three curves did not intersect
precisely at a single point. Therefore, the centroid of the triangle formed by the intersection
of the three curves was taken as the point of intersection.

6. DISCUSSION AND CONCLUSION

In this paper, we have presented a numerical technique for determining the location of
a crack in a slender beam of varying cross-section given the "rst three natural frequencies of
the cracked beam. Sample results for a stepped beam and a two-section tapered beam are
presented. This approach mimics the semi-analytical approach using the Frobenius
method. The results are su$ciently accurate.

The numerical approach has several advantages over the semi-analytical approach. The
method is general enough to model di!erent variations in the depth of the beam (such as
tapers, steps, or curves) without the need for a di!erent formulation. Also, no quadruple
precision calculations are needed as in the case of the semi-analytical method.

Some comments are in order over the use of this approach for crack detection. First, this
method makes the same assumptions as the semi-analytical method and hence will have the
same limitations. For example, since beam theory is used in the formulation, this approach
will not be accurate in case of short beams. If the forward problem of determination of
natural frequencies, given the location and size of the crack, cannot be solved accurately,
the inverse problem solution will also be inaccurate. For example, in any real-life situation,
the analytical or numerical model will predict frequencies that are di!erent from the
experimentally measured quantities. Zero setting attempts to correct this discrepancy, but
zero setting is nothing more than a scaling and cannot account for all modelling or
experimental errors. For example, if the three K versus b curves appear to intersect at two
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di!erent locations, we will have to go for measurement of the fourth natural frequency and
solving the inverse problem with that as an additional input. However, the errors are likely
to increase for the fourth natural frequency.
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